
django-smartfields Documentation
Release 1.1.2

Alexey Kuleshevich

Nov 27, 2020

Contents

1 Installation 3

2 Latest build 5

3 Introduction 7

4 Important Perculiarities 9

5 More Details 11

6 Project Info 15

7 Indices and tables 19

Index 21

i

ii

django-smartfields Documentation, Release 1.1.2

Django Model Fields that are smart

This application introduces a totally new way of handling field’s values through unique ways they are assigned and
processed. It is so simple that nothing needs to be done in order to start using it, yet it is so powerful, that it can handle
automatic image and video file conversions with a simple specification of a conversion function. Check it out, and it
will forever change the way you handle Model Fields.

Contents 1

django-smartfields Documentation, Release 1.1.2

2 Contents

CHAPTER 1

Installation

pip install django-smartfields

3

django-smartfields Documentation, Release 1.1.2

4 Chapter 1. Installation

CHAPTER 2

Latest build

Forkme on Github: django-smartfields

5

https://github.com/lehins/django-smartfields

django-smartfields Documentation, Release 1.1.2

6 Chapter 2. Latest build

CHAPTER 3

Introduction

Here is a short introduction of how this app works and a simple example how it can be used.

First of all, as name suggests, it mainly deals with Model Fields, hence it is supplied with a custom version of every
Django’s Field. There is no difference form original versions of fields in terms of interaction with database, forms
or with any other Django codebase, so both kinds of fields can be used together safely and interchangeably. Main
distinction form Django’s fields is that all smartfields accept a keyword argument dependencies, which should be
a list of Dependency's or FileDependency's.

Dependency is a concept that allows you to change the value of any field or an attribute attached to the model instance,
including the field Dependency which it is specified for. Each Dependency handles the value from a field through
Processors which are functions that can be accepted as default, pre_processor and processor kwargs. An
actual model attribute or a field which a processed value will be assigned to is specified by one or none of the kwargs
suffix and attname. More details on those see documentation in Dependencies and Processors sections, but for
now let’s see a couple of simple examples.

3.1 Example

Let’s say we have a Product model where a slug needs to be automatically generated from product’s name and also
properly modified to look like a slug.

from django.db.models import models
from django.utils.text import slugify
from smartfields import fields
from smartfields.dependencies import Dependency

def name_getter(value, instance, **kwargs):
return instance.name

class Product(models.Model):
name = models.CharField(max_length=255)
slug = fields.SlugField(dependencies=[

(continues on next page)

7

django-smartfields Documentation, Release 1.1.2

(continued from previous page)

Dependency(default=name_getter, processor=slugify)
])

Here is what will happen in above example whenever an instance of Product is created:

• Whenever Product is initilized and slug field is empty, it will attempt to get a value from name field. In case
when it is still empty before model is being saved it will attempt to get the value again, all because of default
function name_getter.

• Right before the model is saved processor function slugify will be invoked, and value of the field from
name will be modified to look like a slug. Important part is, processor will be invoked only whenever the value
of slug field has changed.

8 Chapter 3. Introduction

CHAPTER 4

Important Perculiarities

• Fields are processed in order they are specified in a Model.

• Dependencies are processed in the order they are speciefied in the dependencies list, except the ones with
async flag, these are processed last, but also in the order they were specified.

9

django-smartfields Documentation, Release 1.1.2

10 Chapter 4. Important Perculiarities

CHAPTER 5

More Details

5.1 Dependencies

class smartfields.dependencies.Dependency

__init__(attname=None, suffix=None, processor=None, pre_processor=None, async=False, de-
fault=NOT_PROVIDED, processor_params=None, uid=None)

Parameters

• attname (str) – Name of an attribute or an existing field that dependecy will assign a
value to. Cannot be used together with suffix.

• suffix (str) – Will be used together with a field name in generating an attname in
format field_name_suffix. Generated name can refer to an attribute or an existing field that
dependecy will assign a value to. Cannot be used together with attname.

• processor – A function that takes field’s value as an argument or an instance of a class
derived from BaseProcessor. In a latter case it will receive all arguments: value,
instance, field, field_value, dependee, stashed_value plus any custom
kwargs. If a class is passed instead of it’s instance it will be instantiated, to prevent a
common mistake.

• pre_processor –

• async –

• default –

• processor_params –

• uid –

class smartfields.dependencies.FileDependency
Because FileFields are handled in a different way then regular fields we need a different type of dependecy too.

11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

django-smartfields Documentation, Release 1.1.2

__init__(upload_to=”, storage=None, keep_orphans=KEEP_ORPHANS, **kwargs)

keyword upload_to

keyword storage

keyword keep_orphans

5.2 Processors

class smartfields.processors.BaseProcessor

__init__(**kwargs)

process(value, instance=None, field=None, dependee=None, stashed_value=None, **kwargs)

Parameters

• value – New value that is being assigned to the parent field.

• instance – Model instance that a field is attached to.

• field – Parent field instance.

• dependee – Instance of a field that depends on the field. It is decided by the attname
or suffix argument to the

• stashed_value – This is a previous value that a dependee field was holding. Very
useful for comparing it to new values.

class smartfields.processors.BaseFileProcessor

get_ext(format=None, **kwargs)

class smartfields.processors.RenameFileProcessor

class smartfields.processors.ExternalFileProcessor

class smartfields.processors.FFMPEGProcessor

__init__()

process(value, **kwargs)

Here is an examlple of how to convert a video to MP4 format. In this example every time MediaModel is instanti-
ated FileDependency will automatically attach another field like attribute to the model video_mp4. Moreover,
whenever a new video file is uploaded or simply assigned to a video field, it will use FFMPEGProcessor and
ffmpeg to convert that video file to mp4 format and will assign it the same name as original video with mp4 suffix
and file extension. While converting a video file it will set progress between 0.0 and 1.0, which can be retrieved from
field’s status.

from django.db import models
from smartfields import fields, dependencies
from smartfields.processors import FFMPEGProcessor

class MediaModel(models.Model):
video = fields.FileField(dependencies=[

(continues on next page)

12 Chapter 5. More Details

django-smartfields Documentation, Release 1.1.2

(continued from previous page)

dependencies.FileDependency(suffix='mp4', processor=FFMPEGProcessor(
vbitrate = '1M',
maxrate = '1M',
bufsize = '2M',
width = 'trunc(oh*a/2)*2', # http://ffmpeg.org/ffmpeg-all.html#scale
height = 720,
threads = 0, # use all cores
abitrate = '96k',
format = 'mp4',
vcodec = 'libx264',
acodec = 'libfdk_aac'))])

5.2. Processors 13

django-smartfields Documentation, Release 1.1.2

14 Chapter 5. More Details

CHAPTER 6

Project Info

6.1 Changelog

6.1.1 1.1.2

• Support for Django=3.1.*

6.1.2 1.1.1

• Support for Django=3.0.*

6.1.3 1.1.0

• renamed Dependency.async to Dependency.async_. Fix for #16. Thanks @zglennie

• Fix compatibility with Django=2.x:

– Added app_name='smartifelds' to urls.py file

– Stop using _size and _set_size() attributes in NamedTemporaryFile, since those where only
available in Django=1.x

6.1.4 1.0.7

• added gis fields.

• made lxml a default parser for HTMLProcessor.

6.1.5 1.0.6

• added RenameFileProcessor

15

https://github.com/lehins/django-smartfields/issues/16
https://github.com/zglennie

django-smartfields Documentation, Release 1.1.2

6.1.6 1.0.5

• minor bug fixes.

6.1.7 1.0.4

• Switched to MIT License

• Added stashed_value to processors.

6.1.8 1.0.3

• Added support for Wand with WandImageProcessor.

• Made it compatible with Django 1.8

• Updated compiled JavaScript file.

6.1.9 1.0.2

• Introduced pre_processor.

• Made UploadTo serializible.

• Got rid of custom handlers.

• Minor bugfixes.

6.1.10 1.0.0

• Initial release

6.2 Authors

• Alexey Kuleshevich <lehins@yandex.ru> @lehins

6.3 License

The MIT License (MIT)

Copyright (c) 2015 Alexey Kuleshevich

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

(continues on next page)

16 Chapter 6. Project Info

mailto:lehins@yandex.ru
https://github.com/lehins

django-smartfields Documentation, Release 1.1.2

(continued from previous page)

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

6.3. License 17

django-smartfields Documentation, Release 1.1.2

18 Chapter 6. Project Info

CHAPTER 7

Indices and tables

• genindex

• modindex

19

django-smartfields Documentation, Release 1.1.2

20 Chapter 7. Indices and tables

Index

Symbols
__init__() (smartfields.dependencies.Dependency

method), 11
__init__() (smartfields.dependencies.FileDependency

method), 12
__init__() (smartfields.processors.BaseProcessor

method), 12
__init__() (smartfields.processors.FFMPEGProcessor

method), 12

G
get_ext() (smartfields.processors.BaseFileProcessor

method), 12

P
process() (smartfields.processors.BaseProcessor

method), 12
process() (smartfields.processors.FFMPEGProcessor

method), 12

S
smartfields.dependencies.Dependency

(built-in class), 11
smartfields.dependencies.FileDependency

(built-in class), 11
smartfields.processors.BaseFileProcessor

(built-in class), 12
smartfields.processors.BaseProcessor

(built-in class), 12
smartfields.processors.ExternalFileProcessor

(built-in class), 12
smartfields.processors.FFMPEGProcessor

(built-in class), 12
smartfields.processors.RenameFileProcessor

(built-in class), 12

21

	Installation
	Latest build
	Introduction
	Important Perculiarities
	More Details
	Project Info
	Indices and tables
	Index

